产品中心
M7iBASE-AC-1GE
- 品牌:M7iBASE-AC-1GE
- 规格:M7iBASE-AC-1GE
- 材质:M7iBASE-AC-1GE
- 产地:其它
- 更新时间:2015-05-25
-
联系方式
周忆 女士(销售工程师)
- 举报
收藏该店铺
M7iBASE-AC-1GE
反向旋转的5次谐波磁势和正向旋转的7次谐波磁势都将感应出6倍于基波频率的转子电流,在基波频率为50Hz时,转子电流频率为300Hz。同样,第11次和第13次谐波感应出12倍于基波频率,即600HZ的转子电流。在这些频率下,转子的实际交流电阻远远大于直流电阻。转子电阻实际增大多少取决于导体截面和布置导体的转子槽的几何形状。通常的长宽比为4左右的铜导体,在50Hz时交流电阻与直流电阻之比为1.56,在300Hz时比值约为2.6;600Hz时比值约为3.7。频率更高时,此比值随频率的平方根成比例增加。、谐波铁损电机中的铁心损耗也由于电源电压中出现谐波而增大;定子电流的各次谐波在气隙间建立了时间谐波磁动势。气隙中任何一点的总磁势是基波和时间谐波磁势的合成。对于一个三相6阶梯电压波形,气隙中的磁密峰值比基波值约大10%,但是由时间谐波磁通引起的铁损的增加是很小的。对于端部漏磁通和斜槽漏磁通产生的杂散损耗,在谐波频率作用下将有所增加,这一点在非正弦供电时考虑:端部漏磁效应在定子和转子绕组中都存在,主要是漏磁通进入端板引起的涡流损耗。由于定子磁势和转子磁势间相位差的变化,在斜槽结构中产生斜槽漏磁通,其磁势在端部大,在定转子铁心及齿中产生损耗。
4、电机效率谐波损耗的大小明显地决定于外加电压的谐波含量。谐波分量大,电机损耗增加,效率降低。但是大多数静止逆变器不产生低于5次的谐波,而高次谐波的幅值较小。这种波形的电压对电机效率降低并不严重。对中等容量的异步电机进行计算和对比试验表明,其满载有效电流比基波值约增加4%。如果忽略集肤效应,则电机的铜损与总有效电流的平方成比例,谐波铜损为基波损耗的8%。考虑到由于集肤效应使转子电阻平均可增大3倍,因而电机的谐波铜损应为基波损耗的24%。如果铜损占电机总损耗的50%,则谐波铜损使整个电机的损耗增加12%。铁损的增加很难计算,因为它受电机结构和所用磁性材料的影响。
如果定子电压波形中的高次谐波成分相对较低,像在6阶梯波中那样,谐波铁损增加不会超过10%。如果铁损和杂散损耗占电机总损耗的40%,则谐波损耗仅占电机总损耗的4%。摩擦损耗和风阻损耗是不受影响的,因而电机的全部损耗增加小于20%。如果电机在50Hz正弦电源时的效率为90%,则由于谐波存在使电机效率只降低1%一2%。 如果外加电压波形的谐波成分明显地大于6阶梯波时的谐波成分,则电机的谐波损耗将大大增加,而且可能大于基波损耗。就是在6阶梯波电源时,一个低漏抗的磁阻电机可能吸收一个很大的谐波电流,从而使电机的效率下降5%或更多。在这种情况下,为了满意地运行,就要使用12阶梯波的逆变器,或采用六相的定子绕组。电机的谐波电流和谐波损耗实际上与负载无关,因此时间谐波的损耗大小实际上可以在空载情况下用正弦电源和非正弦电源进行比较确定。以此来确定某种型式或某种结构的电机效率下降的大致范围。深圳兴丰元机电专业生产和销售步进电机、步进电机驱动器、伺服电机、伺服驱动器,代理日本多摩川伺服、东元伺服、德科斯(TKS)行星减速机以及运动控制产品。自主研发有攻丝机伺服电机。使用细分驱动器对控制系统有什么特殊要求?
驱动器细分后将对电机的运行性能产生质的飞跃,但是这都是由驱动器本身产生的,和电机及控制系统无关。在使用时,用户需要注意的一点是步进电机步距角的改变,这一点将对控制系统所发的步进信号的频率有影响,因为细分后步进电机的步距角将变小,要求步进信号的频率要相应提高。以1.8度步进电机为例:驱动器在半步状态时步距角为0.9度,而在十细分时步距角为0.18度,这样在要求电机转速相同的情况下,控制系统所发的步进信号的频率在十细分时为半步运行时的5倍
什么是保持转矩(HOLDING TORQUE)?
驱动器细分后将对电机的运行性能产生质的飞跃,但是这都是由驱动器本身产生的,和电机及控制系统无关。在使用时,用户需要注意的一点是步进电机步距角的改变,这一点将对控制系统所发的步进信号的频率有影响,因为细分后步进电机的步距角将变小,要求步进信号的频率要相应提高。以1.8度步进电机为例:驱动器在半步状态时步距角为0.9度,而在十细分时步距角为0.18度,这样在要求电机转速相同的情况下,控制系统所发的步进信号的频率在十细分时为半步运行时的5倍。
步进电机精度为多少?是否累积?
一般步进电机的精度为步进角的3~5%。步进电机单步的偏差并不会影响到下一步的精度,因此步进电机精度不累积。
步进电机的外表温度允许达到多少?
步进电机温度过高首先会使电机的磁性材料退磁,从而导致力矩下降甚至于丢失。因此电机外表允许的高温度应取决于不同电机磁性材料的退磁点。一般来说,磁性材料的退磁点都在摄氏130度以上,因此步进电机外表温度在摄氏80~90度完全正常。
为什么步进电机的力矩会随转速升高而下降?
步进电机转动时,电机各相绕组的电感将形成一个反向电动势;频率越高, 反向电动势 越大。在它的作用下,电机随频率(或速度)的增大而相电流减小,从而导致力矩下降。
为什么步进电机低速进可以正常运转,但若高于速度就无法启动并伴有啸叫声?
为什么步进电机低速时可以正常运转,但若高于速度就无法启动,并伴有啸叫声? 步进电机有一个技术参数:空载启动频率,即步进电机在空载情况下能够正常启动的脉冲频率,如果脉冲频率高于该值,电机不能正常启动,可能发生丢步或堵转。在有负载的情况下,启动频率应有加速过程,即启动频率较低,然后按加速度升到所希望的高频(电机转速从低速升到高速)。空载启动频率一般为电机运转一圈所需脉冲数的2倍。皮带运输机的驱动减速机在使用时常会遇到某些驱动减速机的输入轴断轴的情况,给用户的生产造成的影响。断轴时通常只是输入轴断,而输出轴确很少断轴。在严重时会发生在几条皮带运输机上陆续发生输入轴断轴现象。这种情况会发生在所有发生断轴的减速机是同一个皮带运输机供货商的情况下。在断轴时断轴后轴断裂处的茬口一般比较平齐,断面一般垂直于轴的长度方向。在移动机械上的皮带运输机和地面皮带运输机上都会发生断轴情况。
1、断轴的外在主要原因应当包括如下几个方面:
1)所选皮带运输机的减速机的承载能力不够,既皮带运输机的驱动减速机选择的过小,当减速机的实际使用功率超过减速机的承载能力后在时间里使皮带机驱动减速机断轴;
2)在电机轴和减速机轴之间通常安装液力偶合器和制动轮,当制动轮和液力偶合器的动平衡不好,偏心严重时会使皮带运输机运行时产生很大的振动。当振动载荷达到某种程度时使减速机输出轴上的应力过大而断裂;
3)安装的同心度的偏差过大。如果在安装电机和减速机之间的液力偶合器和制动轮时应当认真仔细的调整减速机和电机轴之间的同心度,如果偏差过大也会发生偶合器和制动轮在运行时产生过大的震动而出现断轴。
4)减速机设计本身的缺陷导致输入轴断轴。这种情况是发生在完全按照减速机供货商的要求来设计皮带运输机而选用减速机时。虽然所选减速机满足减速机供货商的要求,但还是发生了断轴现象。 xfoyo.taobao
2、减速机断轴的内在因素主要包括如下几个方面:
1)减速机设计时轴断裂处应力过大;
减速机输入轴处轴肩处未细致考虑过渡圆角的曲率半径和变化曲线使应力集中严重发生疲劳破坏;
2)减速机为垂直轴形式,第一级输入轴为伞齿轮轴,在伞齿轮支承轴承处过渡轴肩处出现较严重的应力集中而发生疲劳破坏;
3)减速机为硬齿面减速机,减速机输入轴直径较细,虽然计算强度时通过,因轴本身很细,同样在轴直径变化处应力集中严重并发生疲劳破坏;
4)输入轴的热处理质量不合格;输入轴的材料选用不当。步进电机是一种作为控制用的特种电机,它的旋转是以固定的角度(称为步距角)一步一步运行的,其特点是没有积累误差,所以广泛应用于各种开环控制。步进电机是一种将电脉冲转化为角位移的执行机构。通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(即步距角)。
可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时您可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。因此在需要准确定位或调速控制时均可考虑使用步进电机。
KOLLMORGEN SEIDEL 65WKS BLDC SERVO CONTROLLER TESTED
ADLINK 6-AXIS MOTION CONTROLLER PCI-8366 SSCNET-II CARD
3AXES ORIENTAL VEXTA STEPPING DRIVER MOTOR CNC SERVO 5P
LIPERT 486 INDUSTRIAL PC,IPC,DIGITAL I/O
NSK MegaTORQUE SERVO DRIVER EDC-PS3015AB500 #2
NSK MegaTORQUE SERVO DRIVER EDC-PS3015AB5X0 #1
RADISYS CORPORATION EPC-5,EXM-13A, EXM-14,VGA
CUSTOM BUILT WAFER TRANSFER ROBOT PREALIGNER STEPPING
BANNER MICROSCREEN USDINT-2TN-67146 USE824YI,USRU824YI-
BANNER MICROSCREEN USDINT-2TN-67146 USE824YI,USRU824YI
INTERFACE AZI-2130 BOARD 'LOT OF 5'
ISSOKU BALLSCREW, IKO LINEAR BEARING, ACTUATOR, ROUTER
MITUTOYO M PLAN APO OBJECTIVE LENS 10X/0.28 F=200
MITUTOYO M PLAN APO-2 OBJECTIVE LENS 0.055 F=200
DALSA CORECO IMAGING PCVISIONPLUS FRAME GRABBER
PARKER STEPPING MOTOR ACTUATOR,CNC, ROUTER STROKE:100mm
LUXTRON XINIX 1015 ENDPOINT CONTROLLER FOR DRY ETCH 101
BRONKHORST HIGH-TECH E-7310-AA GAS CONTROLLER
FUJI VME IS70B SERVO BOARD
PACIFIC SCIENTIFIC BRUSHLESS SERVOMOTOR SC423-456-T4
PACIFIC SCIENTIFIC BRUSHLESS SERVOMOTOR SC423-002-T4
AMAT,APPLIED MATERIALS ASSY NO. 0100-11239, H/V MODULE
OLYMPUS AC SERVO BA10BA32CD DBAP10BA32CDA HD GEARHEAD
YASKAWA 100W SERVO PACK,MOTOR GEARHEAD,REDUCER-1:33,CNC
PACIFIC SCIENTIFIC BLDC SERVOMOTOR R45G0NA-R2-NS-NV-00
OMRON SYSMAC CS1W-CLK12-V1 OPTICAL CONTROLLER LINK UNIT
PROFACE GP2300-TC41 24V TOUCH LCD SCREEN GRAPHIC PANEL
COGNEX VME 4200 SERIES VPM-4214-01 VISION PROCESSOR #3
COGNEX VME 4200 SERIES VPM-4214-01 VISION PROCESSOR #4
KLA TENCOR IMAGE PROCESSOR,200Mhz,VME,770-809195-000
KLA TENCOR IMAGE PROCESS BOARD,VME,710-806050-01 REV.D2
THK BALLSCREW, THK LINEAR BEARING, ACTUATOR, ROUTER
ENTEGRIS,FSI NT ELECTRONIC FLOWMETER 4400 LOT OF 3, NEW
FUJI POD UG420H-TC1 TOUCH PANEL PLC PARTS
MITSUBISHI PLC MELSEC FX2-128MT AUTOMATION PLC PARTS
PROFACE XYCOM INDUSTRIAL TOUCH PANEL,MONITOR XT 1502 T