产品中心
3HAC021594-003 |
6)加强学习(reinforcement learning)。
加强学习的特点是通过与环境的试探性(trial and error)交互来确定和优化动作的选择,以实现所谓的序列决策任务。在这种任务中,学习机制通过选择并执行动作,导致系统状态的变化,并有可能得到某种强化信号(立即回报),从而实现与环境的交互。强化信号就是对系统行为的一种标量化的奖惩。系统学习的目标是寻找一个合适的动作选择策略,即在任一给定的状态下选择哪种动作的方法,使产生的动作序列可获得某种优的结果(如累计立即回报大)。
在综合分类中,经验归纳学习、遗传算法、联接学习和加强学习均属于归纳学习,其中经验归纳学习采用符号表示方式,而遗传算法、联接学习和加强学习则采用亚符号表示方式;分析学习属于演绎学习。
实际上,类比策略可看成是归纳和演绎策略的综合。因而基本的学习策略只有归纳和演绎。
从学习内容的角度看,采用归纳策略的学习由于是对输入进行归纳,所学习的知识显然超过原有系统知识库所能蕴涵的范围,所学结果改变了系统的知识演绎闭包,因而这种类型的学习又可称为知识级学习;而采用演绎策略的学习尽管所学的知识能提高系统的效率,但仍能被原有系统的知识库所蕴涵,即所学的知识未能改变系统的演绎闭包,因而这种类型的学习又被称为符号级学习。
3、按应用领域分类
目前主要的应用领域有: 专家系统、认知模拟、规划和问题求解、数据挖掘、网络信息服务、图象识别、故障诊断、自然语言理解、机器人和博弈等领域。
从机器学习的执行部分所反映的任务类型上看,目前大部分的应用研究领域基本上集中于以下两个范畴:分类和问题求解。
(1)分类任务要求系统依据已知的分类知识对输入的未知模式(该模式的描述)作分析,以确定输入模式的类属。相应的学习目标就是学习用于分类的准则(如分类规则)。
(2)问题求解任务要求对于给定的目标状态,??寻找一个将当前状态转换为目标状态的动作序列;机器学习在这一领域的研究工作大部分集中于通过学习来获取能提高问题求解效率的知识(如搜索控制知识,启发式知识等)。
4、综合分类
综合考虑各种学习方法出现的历史渊源、知识表示、推理策略、结果评估的相似性、研究人员交流的相对集中性以及应用领域等诸因素。将机器学习方法区分为以下六类:
1)经验性归纳学习(empirical inductive learning)。
经验性归纳学习采用一些数据密集的经验方法(如版本空间法、ID3法,定律发现方法)对例子进行归纳学习。其例子和学习结果一般都采用属性、谓词、关系等符号表示。它相当于基于学习策略分类中的归纳学习,但扣除联接学习、遗传算法、加强学习的部分。
6)加强学习(reinforcement learning)。
加强学习的特点是通过与环境的试探性(trial and error)交互来确定和优化动作的选择,以实现所谓的序列决策任务。在这种任务中,学习机制通过选择并执行动作,导致系统状态的变化,并有可能得到某种强化信号(立即回报),从而实现与环境的交互。强化信号就是对系统行为的一种标量化的奖惩。系统学习的目标是寻找一个合适的动作选择策略,即在任一给定的状态下选择哪种动作的方法,使产生的动作序列可获得某种优的结果(如累计立即回报大)。
在综合分类中,经验归纳学习、遗传算法、联接学习和加强学习均属于归纳学习,其中经验归纳学习采用符号表示方式,而遗传算法、联接学习和加强学习则采用亚符号表示方式;分析学习属于演绎学习。
实际上,类比策略可看成是归纳和演绎策略的综合。因而基本的学习策略只有归纳和演绎。
从学习内容的角度看,采用归纳策略的学习由于是对输入进行归纳,所学习的知识显然超过原有系统知识库所能蕴涵的范围,所学结果改变了系统的知识演绎闭包,因而这种类型的学习又可称为知识级学习;而采用演绎策略的学习尽管所学的知识能提高系统的效率,但仍能被原有系统的知识库所蕴涵,即所学的知识未能改变系统的演绎闭包,因而这种类型的学习又被称为符号级学习。
3、按应用领域分类
目前主要的应用领域有: 专家系统、认知模拟、规划和问题求解、数据挖掘、网络信息服务、图象识别、故障诊断、自然语言理解、机器人和博弈等领域。
从机器学习的执行部分所反映的任务类型上看,目前大部分的应用研究领域基本上集中于以下两个范畴:分类和问题求解。
(1)分类任务要求系统依据已知的分类知识对输入的未知模式(该模式的描述)作分析,以确定输入模式的类属。相应的学习目标就是学习用于分类的准则(如分类规则)。
(2)问题求解任务要求对于给定的目标状态,??寻找一个将当前状态转换为目标状态的动作序列;机器学习在这一领域的研究工作大部分集中于通过学习来获取能提高问题求解效率的知识(如搜索控制知识,启发式知识等)。
4、综合分类
综合考虑各种学习方法出现的历史渊源、知识表示、推理策略、结果评估的相似性、研究人员交流的相对集中性以及应用领域等诸因素。将机器学习方法区分为以下六类:
1)经验性归纳学习(empirical inductive learning)。
经验性归纳学习采用一些数据密集的经验方法(如版本空间法、ID3法,定律发现方法)对例子进行归纳学习。其例子和学习结果一般都采用属性、谓词、关系等符号表示。它相当于基于学习策略分类中的归纳学习,但扣除联接学习、遗传算法、加强学习的部分。